Add like
Add dislike
Add to saved papers

Circular RNA profiles in mouse lung tissue induced by radon.

BACKGROUND: Radon is a known human lung carcinogen, whose underlying carcinogenic mechanism remains unclear. Recently, circular RNA (circRNA), a class of endogenous non-protein coding RNAs that contain a circular loop, was found to exhibit multiple biological effects. In this study, circRNA profiles in mouse lung tissues between control and radon exposure were analyzed.

METHODS: Six mice were exposed to radon at concentration of 100,000 Bq/m3 , 12 h/d, for up to cumulative doses of 60 working level months (WLM). H&E staining and immunohistochemistry of caspase-3 were used to detect the damages in lung tissue. The lung tissue of control and exposed group were selected for circRNA microarray study. The circRNA/microRNA interaction was analyzed by starBase prediction software. 5 highest expressing circRNAs were selected by real-time PCR to validate the consistency in mouse lung tissue exposed to radon.

RESULTS: Inflammatory reaction was found in mouse lung tissue exposed to radon, and caspase-3 expression was significantly increased. Microarray screening revealed 107 up-regulated and 83 down-regulated circRNAs, among which top 30 circRNAs with the highest fold changes were chosen for further analysis, with 5 microRNAs binding sites listed for each circRNA. Consistency of the top 5 circRNAs with the highest expressions were confirmed in mice exposed with 60WLM of radon.

CONCLUSION: Mouse lung tissue was severely injured when exposed to radon through pathological diagnosis and immunohistochemical analysis. A series of differentially expressed circRNAs demonstrated that they may play an important role in pulmonary toxicity induced by radon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app