JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Towards enhanced PET quantification in clinical oncology.

Positron emission tomography (PET) has, since its inception, established itself as the imaging modality of choice for the in vivo quantitative assessment of molecular targets in a wide range of biochemical processes underlying tumour physiology. PET image quantification enables to ascertain a direct link between the time-varying activity concentration in organs/tissues and the fundamental parameters portraying the biological processes at the cellular level being assessed. However, the quantitative potential of PET may be affected by a number of factors related to physical effects, hardware and software system specifications, tracer kinetics, motion, scan protocol design and limitations in current image-derived PET metrics. Given the relatively large number of PET metrics reported in the literature, the selection of the best metric for fulfilling a specific task in a particular application is still a matter of debate. Quantitative PET has advanced elegantly during the last two decades and is now reaching the maturity required for clinical exploitation, particularly in oncology where it has the capability to open many avenues for clinical diagnosis, assessment of response to treatment and therapy planning. Therefore, the preservation and further enhancement of the quantitative features of PET imaging is crucial to ensure that the full clinical value of PET imaging modality is utilized in clinical oncology. Recent advancements in PET technology and methodology have paved the way for faster PET acquisitions of enhanced sensitivity to support the clinical translation of highly quantitative four-dimensional (4D) parametric imaging methods in clinical oncology. In this report, we provide an overview of recent advances and future trends in quantitative PET imaging in the context of clinical oncology. The pros/cons of the various image-derived PET metrics will be discussed and the promise of novel methodologies will be highlighted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app