Add like
Add dislike
Add to saved papers

Early-Life Exposure to Cadmium Triggers Distinct Zn-Dependent Protein Expression Patterns and Impairs Brain Development.

The objective of this study was to determine if the brain development impairment induced by early-life exposure to cadmium (Cd) could result from changes in the expression pattern of distinct zinc (Zn)-dependent proteins. For this purpose, adult female rats receiving either tap water, Cd, Zn, or Cd + Zn in their drinking water during gestation and lactation periods were used. After birth, the male offspring were screened for locomotors and sensorial defects. At postnatal day 21 (PND 21), the male pups were sacrificed and their brains, liver, and plasma were taken for chemical, biochemical, and molecular analyses. Our results show that exposure to Cd significantly increased the metal accumulation and decreased Zn concentrations in the brain of male pups from Cd-treated mothers. Besides, Cd exposure reduced significantly the locomotor activity of the offspring in open-field test, the body weight, and the cranio-caudal length at PND21. Insulin-like growth factor-I (IGF-1) levels in the plasma and liver were also decreased in male pups from Cd-treated mothers. Cd-induced brain development disruption was accompanied by a significant increase of the superoxide dismutase (SOD) activity, induction of the metallothionein (MT) synthesis, and, at the molecular level, by an upregulation of Zrt-,Irt-related protein 6 (ZIP6) gene and a significant downregulation of the expression of the Zn transporter 3 (ZnT3) and brain-derived neurotrophic factor (BDNF) genes in the brain. No significant changes on the expression of genes encoding other Zn-dependent proteins and factors such as ZnT1, ZIP12, NF-κB, and Zif268. Interestingly, Zn supplementation provided a total or partial correction of the changes induced by the Cd exposure. These data indicated that changes in expression of ZnT3 and ZIP6 as well as alteration of other transcription factors, such as BDNF, or Zn-dependent proteins, such as SOD and MTs, in response to Cd exposure might be an underlying mechanism of Cd-induced brain development impairment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app