Add like
Add dislike
Add to saved papers

Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries.

Nanoscale 2017 November 31
A facile solution-based method was developed to combine the advantage of amorphous nanoscale red P sheets and highly conductive graphene, forming a high-performance P/graphene composite anode for advanced lithium ion batteries. Graphene can be easily expanded into a 3D framework in solution with rich interior porosity and abundant adsorption points, which enables a large percentage of red P to be loaded and form a uniform P/graphene hybrid structure. The nanoscale and amorphous features of red P effectively reduce the volume expansion and mechanical stress within individual P sheets, thereby alleviating P pulverization during cycling. The well dispersed graphene serves as a buffer layer to accommodate the volume expansion and adsorb the stress during electrochemical reactions, thereby maintaining a robust electrode structure. Besides, the highly conductive graphene greatly enhances the ionic/electronic conductivity of the electrode, which favors efficient redox reactions and high P utilization. Based on the superior composite structure, the potentials of both components can be fully exerted, resulting in excellent electrochemical performance. The P/graphene electrode delivered a high reversible capacity of 1286 mA h g-1 based on the weight of the composite after 100 cycles at 200 mA g-1 . Even at a high current density of 1000 mA g-1 , the composite electrode exhibits a high capacity of 1125 mA h g-1 , revealing its potential as a high-performance P-carbon composite anode for advanced lithium ion batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app