Add like
Add dislike
Add to saved papers

Epigallocatechin-3-gallate (EGCG) up-regulates miR-15b expression thus attenuating store operated calcium entry (SOCE) into murine CD4 + T cells and human leukaemic T cell lymphoblasts.

Oncotarget 2017 October 28
CD4+ T cells are key elements in immune responses and inflammation. Activation of T cell receptors in CD4+ T cells triggers cytosolic Ca2+ release with subsequent store operated Ca2+ entry (SOCE), which is accomplished by the pore forming Ca2+ release activated Ca2+ (CRAC) channel Orai1 and its regulator stromal cell-interaction molecule 2 (STIM2). Green tea polyphenol epigallocatechin-3-gallate (EGCG) acts as a potent anti-inflammatory and anti-oxidant agent for various types of cells including immune cells. However, how post-transcriptional gene regulators such as miRNAs are involved in the regulation of Ca2+ influx into murine CD4+ T cells and human Jurkat T cells through EGCG is not defined. EGCG treatment of murine CD4+ T cells significantly down-regulated the expression of STIM2 and Orai1 both at mRNA and protein levels. Furthermore, EGCG significantly decreased SOCE in both murine and human T cells. EGCG treatment increased miRNA-15b (miR-15b) abundance in both murine and human T cells. Bioinformatics analysis reveals that miR-15b, which has a STIM2 binding site, is involved in the down-regulation of SOCE. Overexpression of miR-15b significantly decreased the mRNA and protein expression of STIM2 and Orai1 in murine T cells. Treatment of Jurkat T cells with 10 μM EGCG further decreased mTOR and PTEN protein levels. EGCG decreased mitochondrial membrane potential (MMP) in both human and murine T cells. In conclusion, the observations suggest that EGCG inhibits the Ca2+ entry into murine and human T cells, an effect accomplished at least in part by up-regulation of miR-15b.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app