Add like
Add dislike
Add to saved papers

Comparative Genomics Reveals Specific Genetic Architectures in Nicotine Metabolism of Pseudomonas sp. JY-Q.

Microbial degradation of nicotine is an important process to control nicotine residues in the aqueous environment. In this study, a high active nicotine degradation strain named Pseudomonas sp. JY-Q was isolated from tobacco waste extract (TWE). This strain could completely degrade 5.0 g l-1 nicotine in 24 h under optimal culture conditions, and it showed some tolerance even at higher concentrations (10.0 g l-1 ) of nicotine. The complete genome of JY-Q was sequenced to understand the mechanism by which JY-Q could degrade nicotine and tolerate such high nicotine concentrations. Comparative genomic analysis indicated that JY-Q degrades nicotine through putative novel mechanisms. Two candidate gene cluster duplications located separately at distant loci were predicted to be responsible for nicotine degradation. These two nicotine ( Nic ) degradation-related loci ( AA098_21325-AA098_21340 , AA098_03885-AA098_03900) exhibit nearly completely consistent gene organization and component synteny. The nicotinic acid (NA) degradation gene cluster ( AA098_17770-AA098_17790 ) and Nic -like clusters were both predicted to be flanked by mobile genetic elements (MGE). Furthermore, we analyzed the regions of genomic plasticity (RGP) in the JY-Q strain and found a dynamic genome carrying a type VI secretion system (T6SS) that promotes nicotine metabolism and tolerance based on transcriptomics and used in silico methods to identify the T6SS effector protein. Thus, a novel nicotine degradation mechanism was elucidated for Pseudomonas sp. JY-Q, suggesting its potential application in the bioremediation of nicotine-contaminated environments, such as TWEs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app