Add like
Add dislike
Add to saved papers

Dislocation Multiplications in Extremely Small Hexagonal-structured Titanium Nanopillars Without Dislocation Starvation.

Scientific Reports 2017 November 22
"Smaller is stronger" has been commonly observed in cubic structured and hexagonal close-packed (HCP) structured materials. Dislocation starvation phenomenon is highly responsible for the increase of strength at smaller scale in cubic materials. However, by using quantitative in situ transmission electron microscope (TEM) nano-mechanical testing on cylindrical titanium nano-pillars with diameters of ~150 nm but varied orientations and three dimensional dislocation tomography, we found that dislocation nucleation and multiplication dominate the plastic deformation of the nano-pillars with no sign of dislocation starvation, resulting in much better ability of dislocation storage and plastic stability of HCP structured materials at extremely small scale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app