Add like
Add dislike
Add to saved papers

Energy Reduction Effect of the South-to-North Water Diversion Project in China.

Scientific Reports 2017 November 22
The North China Plain, with a population of approximately 150 million, is facing severe water scarcity. The over-exploitation of groundwater in the region, with accumulation amounts reaching more than 150 billion m3 , causes a series of hydrological and geological problems together with the consumption of a significant amount of energy. Here, we highlight the energy and greenhouse gas-related environmental co-benefits of the South-to-North Water Diversion Project (SNWDP). Moreover, we evaluate the energy-saving effect of SNWDP on groundwater exploitation based on the groundwater-exploitation reduction program implemented by the Chinese government. Our results show that the transferred water will replace about 2.97 billion m3 of exploited groundwater in the water reception area by 2020 and hence reduce energy consumption by 931 million kWh. Further, by 2030, 6.44 billion m3 of groundwater, which accounts for 27% of the current groundwater withdrawal, will save approximately 7% of Beijing's current thermal power generation output.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app