Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Manipulating Aggregation Behavior of the Uncharged Peptide Carbetocin.

Peptides are usually administered through subcutaneous injection. For low potency drugs, this may require high concentration formulations increasing the risk of peptide aggregation, especially for compounds without any intrinsic chargeable groups. Carbetocin was used as a model to study the behavior of uncharged peptides at high concentrations. Manipulation of the aggregation behavior of 70 mg/mL carbetocin was attempted by selecting excipients which interact with hydrophobic groups in carbetocin, and cover hydrophobic surfaces and interfaces. Peptide aggregation was induced by shaking stress and followed over time. Carbetocin solutions showed significant visible particle formation already after 4 h of shaking stress. This particle formation was not due to supersaturation or phase separation but suggested a nucleated aggregation process. None of the excipients prevented carbetocin aggregation, though altered aggregation behavior was observed, such as induction of fibril formation for most, but not all, charged excipients. Sodium dodecyl sulfate was found to accelerate peptide aggregation both below and above the critical micelle concentration in half-filled vials. However, in the absence of an air headspace, sodium dodecyl sulfate above the critical micelle concentration was capable of preventing shaking-induced carbetocin aggregation. Our study highlights the complexity in rational excipient selection to stabilize uncharged peptides at high concentration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app