Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Onset and termination of oscillation of disease spread through contaminated environment.

We consider a reaction diffusion equation with a delayed nonlocal nonlinearity and subject to Dirichlet boundary condition. The model equation is motivated by infection dynamics of disease spread (avian influenza, for example) through environment contamination, and the nonlinearity takes into account of distribution of limited resources for rapid and slow interventions to clean contaminated environment. We determine conditions under which an equilibrium with positive value in the interior of the domain (disease equilibrium) emerges and determine conditions under which Hope bifurcation occurs. For a fixed pair of rapid and slow response delay, we show that nonlinear oscillations can be avoided by distributing resources for both fast or slow interventions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app