Add like
Add dislike
Add to saved papers

Mathematical analysis of a weather-driven model for the population ecology of mosquitoes.

A new deterministic model for the population biology of immature and mature mosquitoes is designed and used to assess the impact of temperature and rainfall on the abundance of mosquitoes in a community. The trivial equilibrium of the model is globally-asymptotically stable when the associated vectorial reproduction number (R0) is less than unity. In the absence of density-dependence mortality in the larval stage, the autonomous version of the model has a unique and globally-asymptotically stable non-trivial equilibrium whenever 1 andlt;R0 andlt;RC0 (this equilibrium bifurcates into a limit cycle, via a Hopf bifurcation at R0=RC0). Numerical simulations of the weather-driven model, using temperature and rainfall data from three cities in Sub-Saharan Africa (Kwazulu Natal, South Africa; Lagos, Nigeria; and Nairobi, Kenya), show peak mosquito abundance occurring in the cities when the mean monthly temperature and rainfall values lie in the ranges [22-25]0C, [98-121] mm; [24-27]0C, [113-255] mm and [20.5-21.5]0C, [70-120] mm, respectively (thus, mosquito control efforts should be intensified in these cities during the periods when the respective suitable weather ranges are recorded).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app