Add like
Add dislike
Add to saved papers

Coordination Structure and Fragmentation Chemistry of the Tripositive Lanthanide-Thio-Diglycolamide Complexes.

Tripositive Ln(TMTDA)3 3+ complexes (Ln = La-Lu except Pm, TMTDA = tetramethyl 3-thio-diglycolamide) were observed in the gas phase by electrospray ionization of LnCl3 and TMTDA mixtures. Collision-induced dissociation (CID) was employed to investigate their fragmentation chemistry, which revealed the influence of metal center as well as ligand on the ligated complexes. Ln(TMTDA)2 (TMTDA-45)3+ resulting from Ccarbonyl -N bond cleavage of TMTDA and hydrogen transfer was the major CID product for all Ln(TMTDA)3 3+ except Eu(TMTDA)3 3+ , which predominantly formed charge-reducing product EuII (TMTDA)2 2+ via electron transfer from TMTDA to Eu3+ . Density functional theory calculations on the structure of La(TMTDA)3 3+ and Lu(TMTDA)3 3+ revealed that Ln3+ was coordinated by six Ocarbonyl atoms from three neutral TMTDA ligands, and both complexes possessed C3h symmetry. The Sether atom deviating from the ligand plane was not coordinated to the metal center. On the basis of the CID results of Ln(TMTDA)3 3+ , Ln(TMGA)3 3+ , and Ln(TMOGA)3 3+ , the fragmentation chemistry associated with the ligand depends on the coordination mode, while the redox chemistry of these tripositive ions is related to the nature of both metal centers and diamide ligands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app