JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Design and Fabrication of Wettability Gradients with Tunable Profiles through Degrafting Organosilane Layers from Silica Surfaces by Tetrabutylammonium Fluoride.

Surface-bound wettability gradients allow for a high-throughput approach to evaluate surface interactions for many biological and chemical processes. Here we describe the fabrication of surface wettability gradients on flat surfaces by a simple, two-step procedure that permits precise tuning of the gradient profile. This process involves the deposition of homogeneous silane SAMs followed by the formation of a surface coverage gradient through the selective removal of silanes from the substrate. Removal of silanes from the surface is achieved by using tetrabutylammonium fluoride which selectively cleaves the Si-O bonds at the headgroup of the silane. The kinetics of degrafting has been modeled by using a series of first order rate equations, based on the number of attachment points broken to remove a silane from the surface. Degrafting of monofunctional silanes exhibits a single exponential decay in surface coverage; however, there is a delay in degrafting of trifunctional silanes due to the presence of multiple attachment points. The effects of degrafting temperature and time are examined in detail and demonstrate the ability to reliably and precisely control the gradient profile on the surface. We observe a relatively homogeneous coverage of silane (i.e., without the presence of islands or holes) throughout the degrafting process, providing a much more uniform surface when compared to additive approaches of gradient formation. Linear gradients were formed on the substrates to demonstrate the reproducibility and tuneability of this subtractive approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app