JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Detecting Interactions between Nanomaterials and Cell Membranes by Synthetic Nanopores.

ACS Nano 2017 December 27
Engineered nanomaterials have been increasingly utilized in industry for various consumer products, environmental treatments, energy storage, and biomedical applications. Meanwhile, it has been established that certain nanomaterials can be toxic to biological cells from extensive experimental and theoretical studies. Despite that the exact molecular mechanisms of this nanomaterial toxicity are still not well understood, it is ubiquitous that their interactions with cell membranes, through either endocytosis or penetration (and thus potential lysis), act as the first step toward the inflammation or even the death of a cell. To facilitate the study of nanomaterial-membrane interactions, here we demonstrate a nanopore-based single-molecule approach that can be applied to monitor a specific nanomaterial-membrane interaction in real time. Combined with molecular dynamics and experimental approaches, we show how an ionic current can be used to detect membrane damage by a graphene nanosheet and illustrate the underlying molecular mechanism. More generally, we expect that measured transmembrane ionic currents (both DC and AC) can signify many particle-induced membrane modifications, such as hole formation, particle adsorption, and protein insertion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app