Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Toward an Axial Nanoscale Ruler for Fluorescence Microscopy.

ACS Nano 2017 December 27
In the discussion of resolution in optical microscopy, axial precision has often come second to its lateral counterpart. However, biological systems make no special arrangements for our preferred direction of imaging. The ability to measure axial distances, that is, the heights of fluorophores relative to a plane of reference, is thus of paramount importance and has been the subject of several recent advances. A novel method is to modify the fluorescence emission based on the height of the individual fluorophore, such that its z-position is encoded somehow in the detected signal. One such approach is metal-enhanced energy transfer, recently extended to multicolor distance measurements and applied to study the topography of the nuclear membrane. Here, the fluorescence lifetime is shortened due to the proximity of the fluorophores to a thin metallic surface. Fluorescence lifetime imaging can therefore be used as an axial ruler with nanometer precision.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app