Add like
Add dislike
Add to saved papers

GAT3 selective substrate l-isoserine upregulates GAT3 expression and increases functional recovery after a focal ischemic stroke in mice.

Ischemic stroke triggers an elevation in tonic GABA inhibition that impairs the ability of the brain to form new structural and functional cortical circuits required for recovery. This stroke-induced increase in tonic inhibition is caused by impaired GABA uptake via the glial GABA transporter GAT3, highlighting GAT3 as a novel target in stroke recovery. Using a photothrombotic stroke mouse model, we show that GAT3 protein levels are decreased in peri-infarct tissue from 6 h to 42 days post-stroke. Prior studies have shown that GAT substrates can increase GAT surface expression. Therefore, we aimed to assess whether the GAT3 substrate, L-isoserine, could increase post-stroke functional recovery. L-Isoserine (38 µM or 380 µM) administered directly into the infarct from day 5 to 32 post-stroke, significantly increased motor performance in the grid-walking and cylinder tasks in a concentration-dependent manner, without affecting infarct volumes. Additionally, L-isoserine induced a lasting increase in GAT3 expression in peri-infarct regions accompanied by a small decrease in GFAP expression. This study is the first to show that a GAT3 substrate can increase GAT3 expression and functional recovery after focal ischemic stroke following a delayed long-term treatment. We propose that enhancing GAT3-mediated uptake dampens tonic inhibition and promotes functional recovery after stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app