Add like
Add dislike
Add to saved papers

Bioinspired Tribotronic Resistive Switching Memory for Self-Powered Memorizing Mechanical Stimuli.

Haptic memory, from the interaction of skin and brain, can not only perceive external stimuli but also memorize it after removing the external stimuli. For the mimicry of human sensory memory, a self-powered artificial tactile memorizing system was developed by coupling bionic electronic skin and nonvolatile resistive random access memory (RRAM). The tribotronic nanogenerator is utilized as electronic skin to transform the touching signal into electric pulse, which will be programmed into the artificial brain: RRAM. Because of the advanced structural designs and accurate parameter matching, including the output voltages and the resistances in different resistive states, the artificial brain can be operated in self-powered mode to memorize the touch stimuli with the responsivity up to 20 times. For demonstrating the application potential of this system, it was fabricated as an independently addressed matrix to realize the memorizing of motion trace in two-dimensional space. The newly designed self-powered nonvolatile system has broad applications in next-generation high-performance sensors, artificial intelligence, and bionics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app