Add like
Add dislike
Add to saved papers

Effect on Electrode Work Function by Changing Molecular Geometry of Conjugated Polymer Electrolytes and Application for Hole-Transporting Layer of Organic Optoelectronic Devices.

In this study, we synthesized three conjugated polymer electrolytes (CPEs) with different conjugation lengths to control their dipole moments by varying spacers. P-type CPEs (PFT-D, PFtT-D, and PFbT-D) were generated by the facile oxidation of n-type CPEs (PFT, PFtT, and PFbT) and introduced as the hole-transporting layers (HTLs) of organic solar cells (OSCs) and polymer light-emitting diodes (PLEDs). To identify the effect on electrode work function tunability by changing the molecular conformation and arrangement, we simulated density functional theory calculations of these molecules and performed ultraviolet photoelectron spectroscopy analysis for films of indium tin oxide/CPEs. Additionally, we fabricated OSCs and PLEDs using the CPEs as the HTLs. The stability and performance were enhanced in the optimized devices with PFtT-D CPE HTLs compared to those of PEDOT:PSS HTL-based devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app