Add like
Add dislike
Add to saved papers

Two viruses, MCV1 and MCV2, which infect Marinitoga bacteria isolated from deep-sea hydrothermal vents: functional and genomic analysis.

Viruses represent a driving force in the evolution of microorganisms including those thriving in extreme environments. However, our knowledge of the viral diversity associated to microorganisms inhabiting the deep-sea hydrothermal vents remains limited. The phylum of Thermotogae, including thermophilic bacteria, is well represented in this environment. Only one virus was described in this phylum, MPV1 carried by Marinitoga piezophila. In this study, we report on the functional and genomic characterization of two new bacterioviruses that infect bacteria from the Marinitoga genus. Marinitoga camini virus 1 and 2 (MCV1 and MCV2) are temperate siphoviruses with a linear dsDNA genome of 53.4 kb and 50.5 kb respectively. Here, we present a comparative genomic analysis of the MCV1 and MCV2 viral genomes with that of MPV1. The results indicate that even if the host strains come from geographically distant sites, their genomes share numerous similarities. Interestingly, heavy metals did not induce viral production, instead the host of MCV1 produced membrane vesicles. This study highlights interaction of mobile genetic elements (MGE) with their hosts and the importance of including hosts-MGEs' relationships in ecological studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app