Add like
Add dislike
Add to saved papers

TMEM88 mediates inflammatory cytokines secretion by regulating JNK/P38 and canonical Wnt/β-catenin signaling pathway in LX-2 cells.

Recent data have shown that Transmembrane protein 88 (TMEM88), a newly discovered protein localized on the cell membrane, interacts with the PDZ domain of disheveled-1 (Dvl-1) in Xenopus embryos. Indeed, TMEM88 might inhibit the canonical Wnt/β-catenin signaling pathway by competing with LRP5/6 for interaction with Dvl-1. TMEM88 plays a crucial role in regulating human stem cell differentiation and embryonic development. Until recently, the function of TMEM88 has been a matter of debate. In this study, we explore the role of TMEM88 in cytokine secretion and the role of the MAPK and Wnt/β-catenin signaling pathway in tumor necrosis factor-alpha (TNF-α)-induced TMEM88 expression in LX-2 cells. We demonstrated that overexpression of TMEM88 results in an upregulation of IL-6 and IL-1β secretion. On the other hand, knockdown of TMEM88 by transfecting siRNA decreased IL-6 and IL-1β secretion in LX-2 cells. Meanwhile, the results showed that TMEM88 silencing could increase the expression levels of canonical Wnt/β-catenin accompanied with upregulated phosphorylation of wnt3a, wnt10b and β-catenin protein levels in response to TNF-α. In conclusion, these results indicated that TMEM88 plays a significant role in TNF-α-enhanced cytokine (IL-6 and IL-1β) secretion of LX-2 cells via regulating JNK/P38 and canonical Wnt/β-catenin signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app