Add like
Add dislike
Add to saved papers

Melatonin ameliorates intrarenal renin-angiotensin system in a 5/6 nephrectomy rat model.

BACKGROUND: Activation of the intrarenal renin-angiotensin system (RAS) plays a critical role in the pathophysiology of chronic kidney disease (CKD) and hypertension. It has been reported that reactive oxygen species (ROS) are important components of intrarenal RAS activation. Melatonin is recognized as a powerful antioxidant, and we recently reported that impaired nighttime melatonin secretion correlates negatively with urinary angiotensinogen excretion, the surrogate marker of intrarenal RAS activity in patients with CKD. However, whether melatonin supplementation ameliorates the augmentation of intrarenal RAS in CKD has remained unknown. We aimed to clarify whether exogenous melatonin ameliorates intrarenal RAS activation via the reduction of ROS production.

METHODS: 5/6 Nephrectomized (Nx) rats were used as a chronic progressive CKD model and compared with sham-operated control rats. The Nx rats were divided into untreated Nx rats and melatonin-treated Nx rats. The levels of intrarenal RAS, ROS components, and renal injury were evaluated after 4 weeks of treatment.

RESULTS: Compared with the control rats, the untreated Nx rats exhibited significant increases in intrarenal angiotensinogen, angiotensin II (AngII) type 1 receptors, and AngII, accompanied by elevated blood pressure, higher oxidative stress (8-hydroxy-2'-deoxyguanosine), lower antioxidant (superoxide dismutase) activity, and increased markers of interstitial fibrosis (α-smooth muscle actin, Snail, and type I collagen) in the remnant kidneys. Treatment with melatonin significantly reversed these abnormalities.

CONCLUSION: Antioxidant treatment with melatonin was shown to ameliorate intrarenal RAS activation and renal injury in a 5/6 Nx rat model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app