Add like
Add dislike
Add to saved papers

Cell sheet-based multilayered liver tumor models for anti-cancer drug screening.

Biotechnology Letters 2018 Februrary
OBJECTIVE: To fabricate in vitro cell-dense, three-dimensional (3D) tumor models by employing a cell sheet technology for testing anti-cancer drug efficacy.

RESULTS: The stratified liver tumor models were fabricated by stacking contiguous HepG2 cell sheets. Triple-layer (3L), double-layer (2L), single-layer (1L) cell sheet-based liver tumor models (CSLTMs) demonstrated 106, 96, 85% cell viability, respectively, after 3 days treatment of 10 µM doxorubicin hydrochloride (DOX), while cell viability in two-dimensional (2D) conventional culture (control) was 27%. After 7 days of DOX treatment, the viabilities of 3L, 2L, 1L, control were 24, 14, 3 and 4%, respectively. Probable explanations were blocked diffusion of DOX by the intact and multilayered structure and also hypoxia in the bottom of multilayered cell sheets.

CONCLUSION: CSLTMs showed a thickness-dependent cytotoxic efficacy of DOX and greater drug resistance than the control, thereby providing useful information toward the development of improved biomimetic tumor models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app