Add like
Add dislike
Add to saved papers

Protective effects of lipoic acid against acrylamide-induced neurotoxicity: involvement of mitochondrial energy metabolism and autophagy.

Food & Function 2017 December 14
Acrylamide (ACR) is a chronic neurotoxin that is generated in high-starch foods during heat processing. Alpha-lipoic acid (LA) is an antioxidant that occurs in most plants and animals. The objective of this study was to reveal the mechanism of ACR-triggered neurotoxicity and identify the protective role of LA in SH-SY5Y cells. In this study, LA restored ACR-stimulated depletion of glutathione content and mitochondrial membrane potential, moderated the activation of inflammatory pathways, and recovered the Keap1/Nrf2 pathway. Moreover, LA upregulated the activities of oxidative phosphorylation complexes and diminished ACR-induced variation in AMPK/GSK3β, Ca2+ disturbance, and ATP depletion. The Sirt1/PGC-1α pathway was inhibited by ACR. Notably, autophagy was activated in the mitochondria-mediated apoptosis induced by ACR, which was also blocked by LA. Overall, our study demonstrated the pivotal roles of the mitochondrial energy metabolism and autophagy in the protective effects of LA and cytotoxicity of ACR in SH-SY5Y cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app