Add like
Add dislike
Add to saved papers

Diaphragm thickening fraction to predict weaning-a prospective exploratory study.

Background: Diaphragm ultrasound (DUS) is a well-established point of care modality for assessment of dimensional and functional aspects of the diaphragm. Amongst various measures, diaphragmatic thickening fraction (DT f ) is more comprehensive. However, there is still uncertainty about its capability to predict weaning from mechanical ventilation (MV). The present prospective observational exploratory study assessed the diaphragm at variable negative pressure triggers (NPTs) with US to predict weaning in ICU patients.

Methods: Adult ICU patients about to receive their first T-piece were included in the study. Linear and curvilinear US probes were used to measure right side diaphragm characteristics first at pressure support ventilation (PSV) of 8 cmH2O with positive end expiratory pressure (PEEP) of 5 cmH2O against NPTs of 2, 4, and 6 cmH2O and then later during their first T-piece. The measured variables were then categorized into simple weaning (SW) and complicated weaning (CW) groups and their outcomes analyzed.

Results: Sixty-four (M:F, 40:24) medical (55/64, 86%) patients were included in the study. Sepsis of lung origin (65.5%) was the dominant reason for MV. There were 33 and 31 patients in the SW and CW groups, respectively. DT f predicts SW with a cutoff ≥ 25.5, 26.5, 25.5, and 24.5 for 2, 4, and 6 NPTs and T-piece, respectively, with ≥ 0.90 ROC AUC. At NPT of 2, DT f had the highest sensitivity of 97% and specificity of 81% [ROC AUC (CI), 0.91 (0.84-0.99); p  < 0.001].

Conclusions: DT f may successfully predict SW and also help identify patients ready to wean prior to a T-piece trial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app