Add like
Add dislike
Add to saved papers

Longitudinal Influence of Pregnancy on Nicotine Metabolic Pathways.

Nicotine metabolism increases in pregnancy, which may contribute to the difficulties that pregnant women have in quitting smoking. We aimed to determine the extent and timing of changes in nicotine metabolic pathways, including C-oxidation, N-glucuronidation, and the pregnancy-induced influences on the activity of enzymes mediating these pathways (CYP2A6 and UGT2B10, respectively). Current smoking pregnant women ( n = 47) provided a urine sample during early pregnancy (12.5 weeks), late pregnancy (28.9 weeks), and 6 months postpartum. Concentrations of urinary nicotine and metabolites were analyzed using liquid chromatography tandem mass spectrometry and compared using general linear repeated measures analyses. Nicotine C-oxidation was 1.07-fold ( P = 0.12) and 1.11-fold ( P < 0.001) higher at early and late pregnancy, respectively, compared with postpartum. Nicotine N-glucuronidation was 1.33-fold ( P = 0.06) and 1.67-fold ( P = 0.003) higher at early and late pregnancy, respectively, compared with postpartum. The CYP2A6 phenotype ratio (total 3'-hydroxycotinine/cotinine) was significantly higher at early and late pregnancy compared with postpartum (all P < 0.05) and correlated with nicotine C-oxidation (all P < 0.001), suggesting CYP2A6 activity is induced during pregnancy. The UGT2B10 phenotype ratio (nicotine glucuronide/nicotine) was higher at early and late pregnancy compared with postpartum ( P = 0.07 and P < 0.05, respectively) and correlated with a second UGT2B10 phenotype ratio (cotinine glucuronide/cotinine) (all P < 0.001), suggesting UGT2B10 activity is induced during pregnancy. In conclusion, pregnancy-induced increases in nicotine metabolism start by 12 weeks gestation and continue as pregnancy progresses most likely due to induction of CYP2A6 and UGT2B10, resulting in potential reductions in the effectiveness of nicotine replacement therapies and an increase in metabolism of other CYP2A6 and UGT2B10 substrates during pregnancy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app