Add like
Add dislike
Add to saved papers

Interplay of adipocyte and hepatocyte: Leptin upregulates hepcidin.

Conflicting evidence concerning leptin, an adipocyte-derived hormone, in atherogenesis and non-alcoholic fatty liver disease (NAFLD) has been reported. Iron metabolism and iron-mediated oxidative stress should be taken into consideration for the clarification of the pathogenesis of these diseases. In this study, we demonstrate that leptin receptor activation directly affects iron metabolism by the finding that serum levels of hepcidin, the master regulator of iron in the whole body, were significantly lower in leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) mice. The administration of recombinant leptin to ob/ob mice for two weeks showed a significant increase in serum hepcidin and hepatic Hamp mRNA levels. Hamp mRNA levels were significantly correlated with hepatic iron content and BMP6 mRNA levels. Hepatic iron content was associated with the increase in mRNA levels of divalent metal transporter 1 and transferrin receptor. Our data provide evidence that the interplay of these two hormones could help improve the understanding of the pathogenesis of atherosclerosis and NAFLD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app