Add like
Add dislike
Add to saved papers

Enhanced Wiener filter for ultrasound image restoration.

BACKGROUND AND OBJECTIVE: Speckle phenomenon strongly affects UltraSound (US) images. In the last years, several efforts have been done in order to provide an effective denoising methodology. Although good results have been achieved in terms of noise reduction effectiveness, most of the proposed approaches are not characterized by low computational burden and require the supervision of an external operator for tuning the input parameters.

METHODS: Within this manuscript, a novel approach is investigated, based on Wiener filter. Working in the frequency domain, it is characterized by high computational efficiency. With respect to classical Wiener filter, the proposed Enhanced Wiener filter is able to locally adapt itself by tuning its kernel in order to combine edges and details preservation with effective noise reduction. This characteristic is achieved by implementing a Local Gaussian Markov Random Field for modeling the image. Due to its intrinsic characteristics, the computational burden of the algorithm is sensibly low compared to other widely adopted filters and the parameter tuning effort is minimal, being well suited for quasi real time applications.

RESULTS: The approach has been tested on both simulated and real datasets, showing interesting performances compared to other state of art methods.

CONCLUSIONS: A novel denoising method for UltraSound images is proposed. The approach is able to combine low computational burden with interesting denoising performances and details preservation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app