Add like
Add dislike
Add to saved papers

Escherichia coli Nissle 1917 engineered to express Tum-5 can restrain murine melanoma growth.

Oncotarget 2017 October 18
Tumor growth and metastasis depend on angiogenesis. Thus, inhibiting tumor angiogenesis has become promising cancer therapeutic strategy in recent years. Tumstatin is a more powerful angiogenesis inhibitor than endostatin. Anti-angiogenic active fragment encoding amino acids 45-132 (Tum-5) of tumstatin was subcloned into four different inducible expression vectors and successfully solubly expressed in Escherichia coli BL21 (DE3) in this study. Subsequently, an anaerobic inducible expression vector was constructed under Vitreoscilla hemoglobin gene promoter Pvhb in E. coli Nissle 1917 (EcN). The secretory expression of Tum-5 in the engineered bacterium was determined in vitro and in vivo by Western blot or immunochemistry. The anti-tumor effect detection demonstrated that EcN could specifically colonize the tumor, and B16 melanoma tumor growth was remarkably restrained by EcN (Tum-5) in mice bearing B16 melanoma tumor. Abundant infiltrating inflammatory cells were observed in tumor areas of the EcN-treated group through hematoxylin and eosin staining, with a relatively reduced expression of endothelial marker platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) by immunofluorescence in tumor sections of EcN (Tum-5)-treated mice. No significant morphological differences were observed in the liver, kidney and spleen between EcN-treated mice and the control group, indicating that EcN was cleared by the immune system and did not cause systemic toxicity in mice. These findings demonstrated that the gene delivery of Tum-5 to solid tumors could be an effective strategy for cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app