JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Multiple role of 3-mercaptopyruvate sulfurtransferase: antioxidative function, H 2 S and polysulfide production and possible SO x production.

Rat 3-mercaptopyruvate sulfurtransferase (MPST) is a 32 808 Da simple protein. Cys247 is a catalytic site, and Cys154 and Cys263 are on the enzyme surface. MPST is found in all tissues, particularly in the kidneys, although the localization of its activity differs in each tissue. In this review, four functions of MPST are reviewed: (i) antioxidative function: Cys247 is redox-sensitive and serves as a redox-sensing switch. It is oxidized to cysteine sulfenate, which has a low redox potential, upon which the enzyme is inactivated. Then, reduced thioredoxin (Trx) with a reducing system (Trx reductase and NADPH) reduces the sulfenate to restore activity; meanwhile, Cys154 and Cys263 form an intermolecular disulfide bond, which serves as another redox-sensing switch. Consequently, Trx specifically cleaves the intermolecular disulfide bond by converting it from the inactive form (dimer) to the active form (monomer). (ii) Hydrogen sulfide and polysulfide production: hydrogen sulfide is produced via reduction of the persulfurated sulfur-acceptor substrate by reduced Trx or Trx with a reducing system; as an alternative process, stable polysulfurated or persulfurated Cys247 as a reaction intermediate is reduced by Trx with a reducing system to release hydrogen sulfide and polysulfides. (iii) Possible sulfur oxide production: sulfur oxides (SO, SO2 and SO3 ) can be produced in the redox cycle of sulfane sulfur formed at the catalytic site Cys247 (Cys-SO- , Cys-SO2- and Cys-SO3- ) as reaction intermediates and released by reduced Trx or Trx with a reducing system. (iv) Possible anxiolytic-like effects: MPST-knockout mice exhibited anxiolytic-like effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app