Add like
Add dislike
Add to saved papers

Reducing Diastereomorphous Bis(phosphane oxide) Atropisomers to One Atropisomerically Pure Diphosphane: A New Ligand and a Novel Ligand-Preparation Design.

1,1'-Biphenyl-2,2'-diphosphanes with an achiral bridge spanning C-5 and C-5' form atropisomers that are enantiomers. Accessing them in an atropisomerically pure form requires resolving a racemic mixture thereof or of a bis(phosphane oxide) precursor. 1,1'-Biphenyl-2,2'-diphosphanes with a homochiral bridge spanning C-5 and C-5' form atropisomers that are diastereomers. We synthesized the first compound of this kind 1) atropselectively and 2) under thermodynamic control-seemingly a first-time exploit in diphosphane synthesis. The selectivity-inducing step was a high-temperature reduction of two non-interconverting bis(phosphane oxide) atropisomers (60:40 mixture). It furnished the desired diphosphane atropisomerically pure (and atropconvergently because the yield was 67 %). This diphosphane proved worthwhile in Tsuji-Trost allylations, the Hayashi addition of phenylboronic acid to cyclohexenone, and the asymmetric hydrogenation of methyl acetoacetate (up to 95 % yield and 95 % ee).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app