Add like
Add dislike
Add to saved papers

Braking of a Light-Driven Molecular Rotary Motor by Chemical Stimuli.

Artificial molecular motors hold great promise for application in responsive functional materials as well as to control the properties of biohybrid systems. Herein a strategy is reported to modulate the rotation of light-driven molecular motors. That is, the rotary speed of a molecular motor, functionalized with a biphenol moiety, could be decreased in situ by non-covalent substrate binding, as was established by1 H NMR and UV/Vis spectroscopy. These findings constitute an important step in the development of multi-responsive molecular machinery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app