Add like
Add dislike
Add to saved papers

Mitochondrial F 1 -ATPase extends glycolysis and pH decline in an in vitro model.

Meat Science 2018 March
The experiment was conducted to identify the mitochondrial protein responsible for enhancing glycolytic flux. We hypothesized that mitochondrial F1 -ATPase promotes ATP hydrolysis and thereby the flux through glycolysis. Porcine longissimus muscle mitochondria were incorporated into an in vitro system designed to recapitulate postmortem glycolysis with or without Na-azide to specifically inhibit the β-subunit of mitochondrial F1 -ATPase that catalyzes ATP hydrolysis. Addition of mitochondria enhanced ATP hydrolysis, glycogen degradation, lactate accumulation, and pH decline in the in vitro system. However, the majority of mitochondria-mediated enhancement in glycolytic flux was abolished in the presence of Na-azide. To investigate further, myofibrillar and mitochondrial proteins were added to the in vitro system after 240min from the initiation of the reaction. Greater pH decline and lactate accumulation were observed in system containing mitochondrial protein compared to their myofibrillar counterpart. In conclusion, mitochondrial F1 -ATPase is capable of increasing glycolytic flux through promoting greater ATP hydrolysis at lower pH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app