Add like
Add dislike
Add to saved papers

New insights into bisphenols removal by nitrogen-rich nanocarbons: Synergistic effect between adsorption and oxidative degradation.

In this work, nitrogen-rich graphene-like carbon sheets (N-GLCS) with high specific surface area (488.4m2 /g), narrow pore distribution and high N-doping (18.4 at%) were prepared and applied as both adsorbent and catalyst for the removal of bisphenols. Adsorption experiments demonstrated the high adsorption capacities of the N-GLCS toward bisphenol F (BPF) (222.9mg/g), bisphenol A (BPA) (317.8mg/g), and bisphenol C (BPC) (540.4mg/g). Results showed that about 98.6% of BPA (70mg/L) was removed at pH 7.0 within 80min after the adsorption-catalytic degradation process. The N-GLCS also showed a superb reusability for the catalytic oxidative degradation of BPA (70mg/L) with the removal percentage maintains over 83% after 5 cycles. With the synergistic combination of the excellent adsorption and catalytic properties of the N-GLCS, trace amount of pollutants can be preconcentrated and immobilized at the surface of N-GLCs, at the same time, active radicals were also produced at the surface of the N-GLCS by the activation of peroxydisulfate (PS), and finally the pollutants can be degraded in-situ by the active radicals. These findings provide a new avenue towards the efficient removal of trace-level EDCs from water solution by using the coupled adsorption-advanced oxidation processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app