Add like
Add dislike
Add to saved papers

Genetic and Epigenetic Strategies Potentiate Gal4 Activation to Enhance Fitness in Recently Diverged Yeast Species.

Current Biology : CB 2017 December 5
Certain genes show more rapid reactivation for several generations following repression, a conserved phenomenon called epigenetic transcriptional memory. Following previous growth in galactose, GAL gene transcriptional memory confers a strong fitness benefit in Saccharomyces cerevisiae adapting to growth in galactose for up to 8 generations. A genetic screen for mutants defective for GAL gene memory revealed new insights into the molecular mechanism, adaptive consequences, and evolutionary history of memory. A point mutation in the Gal1 co-activator that disrupts the interaction with the Gal80 inhibitor specifically and completely disrupted memory. This mutation confirms that cytoplasmically inherited Gal1 produced during previous growth in galactose directly interferes with Gal80 repression to promote faster induction of GAL genes. This mitotically heritable mode of regulation is recently evolved; in a diverged Saccharomyces species, GAL genes show constitutively faster activation due to genetically encoded basal expression of Gal1. Thus, recently diverged species utilize either epigenetic or genetic strategies to regulate the same molecular mechanism. The screen also revealed that the central domain of the Gal4 transcription factor both regulates the stochasticity of GAL gene expression and potentiates stronger GAL gene activation in the presence of Gal1. The central domain is critical for GAL gene transcriptional memory; Gal4 lacking the central domain fails to potentiate GAL gene expression and is unresponsive to previous Gal1 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app