Add like
Add dislike
Add to saved papers

Highly Sustainable Zinc Anodes for a Rechargeable Hybrid Aqueous Battery.

The synthesis of novel zinc electrodes has been successfully implemented by using the electroplating method with the aid of inorganic additives in the electroplating solution. The selected inorganic additives are indium sulfate, tin oxide, and boric acid. From X-ray diffraction results, these synthesized zinc electrodes prefer (002) and/or (103) crystallographic orientations, representing basal morphology and high resistance to dendrite growth. The corrosion rates of these electroplated zinc samples decrease as much as 11 times smaller than the corrosion rate on zinc foil when the zinc materials are in contact with the aqueous electrolyte of a rechargeable hybrid aqueous battery (ReHAB). The ReHABs employing these anodes exhibit up to a threefold decrease in float charge current density after a seven-day constant-voltage charging at 2.1 V versus Zn2+ /Zn. Furthermore, the capacity retention is up to 15 % higher than the performance of battery containing commercial Zn after 1000 cycles of charge-discharge. The significant advancements are attributed to the careful preparation of the anode, which contains appropriate crystallographic orientation and morphology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app