Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Afterglow Solid-State NMR Spectroscopy.

Biomolecular solid-state NMR experiments have traditionally been collected through detection of 13 C or 15 N nuclei. Since these nuclei have relatively low sensitivity stemming from their smaller gyromagnetic ratios relative to 1 H, the time required to collect multi-dimensional datasets serves as a limitation to resonance assignment and structure determination. One improvement in the field has been to employ simultaneous or parallel acquisition techniques with the goal of acquiring more than one dataset at a time and therefore speeding up the overall data collection process. Central to these experiments is the cross-polarization (CP) element, which serves as a way to transfer magnetization between nuclei via magnetic dipolar couplings. In this chapter, we show how residual signal remaining after CP is a polarization source that can be used to acquire additional datasets. The setup of this class of experiments, referred to as Afterglow spectroscopy, is described and demonstrated using a membrane protein transporter involved in multidrug resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app