Add like
Add dislike
Add to saved papers

Permeability of hair to cadmium, copper and lead in five species of terrestrial mammals and implications in biomonitoring.

The capacity of mammal hair to absorb toxic metals and its utility in biomonitoring has been broadly studied. Though these metal-binding properties has generally been attributed to the sulphur contained in cysteine, an amino acid that forms part of keratin, there are not many experimental studies that analyze the role of sulphur in the external deposition of potentially toxic metallic elements in order to better understand the potential of hair in biomonitoring and generate better tools for differentiating between internal and external deposition of contaminants. In this study, an experimental analysis is carried out using a scanning electron microscope on hairs of five terrestrial mammal species (Peromyscus furvus, P. maniculatus, Glossophaga soricina, Artibeus jamaicensis and Marmosa mexicana) treated with cadmium, copper and lead salts. We quantified absorbed metals as well as natural elements of the hair by energy dispersive X-ray spectroscopy (EDS) to analyze using simple statistics the role of sulphur in the absorption Cd, Cu and Pb. Given the lack of studies comparing the mechanisms of deposition of metal elements among different orders of Class Mammalia, external morphology was considered to be an important factor in the deposition of metallic particles of Cd, Cu and Pb. Bat species (Glossophaga soricina, Artibeus jamaicensis) showed a high concentration of particles in their scales, however, no between-species differences in metal absorption were observed, and during the exogenous deposition metal particles do not permeate the medulla. These results suggest that the sulphur in hair itself cannot bind metals to hair cuticle and that hair absorption capacity depends on a variety of factors such as aspects of hair morphology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app