Add like
Add dislike
Add to saved papers

A method for the design of ultrasonic devices for scanning acoustic microscopy using impulsive signals.

Ultrasonics 2018 March
Scanning acoustic microscopy (SAM) using impulsive signals is useful for characterization of biological tissues and cells. The operating center frequency of an ultrasonic device strongly depends on the performance characteristics of the device if the measurement is conducted by using impulsive signals. In this paper, a method for the design of ultrasonic devices for SAM using impulsive signals was developed. A new plane-wave model was introduced to calculate frequency characteristics of loss of ultrasonic devices by taking into account the conversion loss at the ultrasonic transducer, the transmission loss at the acoustic anti-reflection coating, and the propagation loss in the couplant. Ultrasonic devices were fabricated with a ZnO ultrasonic transducer using two acoustic lenses with aperture radii of 1.0 mm and 0.5 mm, respectively. The frequencies at which measured losses became minima corresponded to the calculation results by the plane-wave model. This numerical calculation method is useful for designing ultrasonic devices for acoustic microscopy using impulsive signals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app