Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dietary fish oil differentially ameliorates high-fructose diet-induced hepatic steatosis and hyperlipidemia in mice depending on time of feeding.

Chrononutrition is the science of nutrition based on chronobiology. Numerous epidemiological studies have shown that fish oil (FO) reduces the risk of cardiovascular events through various actions such as lowering triglycerides. The present study aimed to determine the time of day when the hypertriglyceridemia-decreasing ability of FO is optimal in mice. A high-fructose diet (HFrD) that induces hyperlipidemia in mice was replaced with the same diet containing 4% FO (HFrD-4% FO) at different times of the day for 2 weeks as described below. Mice were fed with HFrD alone (CTRL) or with HFrD containing 4% FO for 12 h around the time of activity onset [breakfast (BF)-FO] or offset [dinner (DN)-FO]. Plasma and liver concentrations of triglycerides and total cholesterol were reduced in BF-FO but not in DN-FO mice compared with CTRL mice. The temporal expression of genes associated with fatty acid synthesis such as Fasn, Acaca, Scd1 and Acly in the liver was significantly suppressed in both BF-FO and DN-FO mice. Expression levels of Scd1 in epididymal adipose tissue were significantly suppressed only in the BF-FO mice. Plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid were far more increased in BF-FO than in DN-FO mice. Significantly more of these n-3 polyunsaturated fatty acids (PUFAs) were excreted in the feces of DN-FO than of BF-FO mice. These findings suggest that dietary FO exerts more hypolipidemic activity at the time of breakfast than dinner because the intestinal absorption of n-3 PUFAs is more effective at that time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app