Add like
Add dislike
Add to saved papers

Enhancement of invadopodia activity in glioma cells by sublethal doses of irradiation and temozolomide.

OBJECTIVE Glioblastoma is the most common primary central nervous system tumor in adults. These tumors are highly invasive and infiltrative and result in tumor recurrence as well as an extremely poor patient prognosis. The current standard of care involves surgery, radiotherapy, and chemotherapy. However, previous studies have suggested that glioblastoma cells that survive treatment are potentially more invasive. The goal of this study was to investigate whether this increased phenotype in surviving cells is facilitated by actin-rich, membrane-based structures known as invadopodia. METHODS A number of commercially available cell lines and glioblastoma cell lines obtained from patients were initially screened for the protein expression levels of invadopodia regulators. Gelatin-based zymography was also used to establish their secretory protease profile. The effects of radiation and temozolomide treatment on the glioblastoma cells were then investigated with cell viability, Western blotting, gelatin-based zymography, and invadopodia matrix degradation assays. RESULTS The authors' results show that the glioma cells used in this study express a number of invadopodia regulators, secrete MMP-2, and form functional matrix-degrading invadopodia. Cells that were treated with radiotherapy and temozolomide were observed to show an increase primarily in the activation of MMP-2. Importantly, this also resulted in a significant enhancement in the invadopodia-facilitated matrix-degrading ability of the cells, along with an increase in the percentage of cells with invadopodia after radiation and temozolomide treatment. CONCLUSIONS The data from this study suggest that the increased invasive phenotype that has been previously observed in glioma cells posttreatment is mediated by invadopodia. The authors propose that if the formation or activity of these structures can be disrupted, they could potentially serve as a viable target for developing novel adjuvant therapeutic strategies that can be used in conjunction with the current treatment protocols in combatting the invasive phenotype of this deadly disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app