Add like
Add dislike
Add to saved papers

Multistage Transformation and Lattice Fluctuation at AgCl-Ag Interface.

Solid-state transformation between different materials is often accompanied by mechanical expansion and compression due to their volume change and structural evolution at interfaces. However, these two types of dynamics are usually difficult to monitor in the same time. In this work, we use in situ transmission electron microscopy to directly study the reduction transformation at the AgCl-Ag interface. Three stages of lattice fluctuations were identified and correlated to the structural evolution. During the steady state, a quasi-layered growth mode of Ag in both vertical and lateral directions were observed due to the confinement of AgCl lattices. The development of planar defects and depletion of AgCl are respectively associated with lattice compression and relaxation. Topography and structure of decomposing AgCl was further monitored by in situ scanning transmission electron microscopy. Silver species are suggested to originate from both the surface and the interior of AgCl, and be transported to the interface. Such mass transport may have enabled the steady state and lattice compression in this volume-shrinking transformation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app