JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Effect of an Imposed Contact on Secondary Structure in the Denatured State of Yeast Iso-1-cytochrome c.

Biochemistry 2017 December 27
There is considerable evidence that long-range interactions stabilize residual protein structure under denaturing conditions. However, evaluation of the effect of a specific contact on structure in the denatured state has been difficult. Iso-1-cytochrome c variants with a Lys54 → His mutation form a particularly stable His-heme loop in the denatured state, suggestive of loop-induced residual structure. We have used multidimensional nuclear magnetic resonance methods to assign 1 H and 15 N backbone amide and 13 C backbone and side chain chemical shifts in the denatured state of iso-1-cytochrome c carrying the Lys54 → His mutation in 3 and 6 M guanidine hydrochloride and at both pH 6.4, where the His54-heme loop is formed, and pH 3.6, where the His54-heme loop is broken. Using the secondary structure propensity score, with the 6 M guanidine hydrochloride chemical shift data as a random coil reference state for data collected in 3 M guanidine hydrochloride, we found residual helical structure in the denatured state for the 60s helix and the C-terminal helix, but not in the N-terminal helix in the presence or absence of the His54-heme loop. Non-native helical structure is observed in two regions that form Ω-loops in the native state. There is more residual helical structure in the C-terminal helix at pH 6.4 when the loop is formed. Loop formation also appears to stabilize helical structure near His54, consistent with induction of helical structure observed when His-heme bonds form in heme-peptide model systems. The results are discussed in the context of the folding mechanism of cytochrome c.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app