Add like
Add dislike
Add to saved papers

Rational Manipulation of IrO 2 Lattice Strain on α-MnO 2 Nanorods as a Highly Efficient Water-Splitting Catalyst.

Developing more efficient and stable oxygen evolution reaction (OER) catalysts is critical for future energy conversion and storage technologies. We demonstrate that inducing a lattice strain in IrO2 crystal structure due to interface lattice mismatch enables an enhancement of the OER catalytic activity. The lattice strain is obtained by the direct growth of IrO2 nanoparticles on a specially exposed surface of α-MnO2 nanorods via a simple two-step hydrothermal synthesis. Interestingly, the prepared hydride OER activity increases with a lower IrO2 grown mass, which offers an opportunity to reduce the usage of precious iridium and ultimately obtains a specific mass activity of 3.7 times than that of IrO2 prepared under the same conditions and exhibits equivalent stability. The lattice mismatch in the underlying interface induces the formation of lattice strain in IrO2 rather than the charge transfer between the materials. The lattice strain changes are in good agreement with the order of the OER activity. Our experimental results indicate that using the special exposed surface substrates or tuning the supporting morphology structure can manipulate the catalyst materials lattice strain for the design of more efficient OER catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app