Add like
Add dislike
Add to saved papers

Macroscopic and microscopic analyses in flexor tendons of the tarsometatarso-phalangeal joint of ostrich (Struthio camelus) foot with energy storage and shock absorption.

Flexor tendons function as energy storage and shock absorption structures in the tarsometatarso-phalangeal joint (TMTPJ) of ostrich feet during high-speed and heavy-load locomotion. In this study, mechanisms underlying the energy storage and shock absorption of three flexor tendons of the third toe were studied using histology and scanning electron microscopy (SEM). Macroscopic and microscopic structures of the flexor tendons in different positions of TMTPJ were analyzed. Histological slices showed collagen fiber bundles of all flexor tendons in the middle TMTPJ were arranged in a linear-type, but in the proximal and distal TMTPJ, a wavy-type arrangement was found in the tendon of the M. flexor digitorum longus and tendon of the M. flexor perforans et perforatus digiti III, while no regular-type was found in the tendon of the M. flexor perforatus digiti III. SEM showed that the collagen fiber bundles of flexor tendons were arranged in a hierarchically staggered way (horizontally linear-type and vertically linear-type). Linear-type and wavy-type both existed in the proximal TMTPJ for the collagen fiber bundles of the tendon of the M. flexor perforatus digiti III, but only the linear-type was found in the distal TMTPJ. A number of fibrils were distributed among the collagen fiber bundles, which were likely effective in connection, force transmission and other functions. The morphology and arrangement of collagen fiber bundles were closely related to the tendon functions. We present interpretations of the biological functions in different positions and types of the tendons in the TMTPJ of the ostrich feet.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app