Add like
Add dislike
Add to saved papers

Dense fluidized granular media in microgravity.

Handling and transport of granular media are inevitably governed by the settling of particles. Settling into a dense state is one of the defining characteristics of granular media, among dissipation and absence of thermal agitation. Hence, settling complicates the adaptation of microscopic theories from atomic, molecular, or colloidal media to granular media. It is desirable to provide experiments in which selectively one of the granular characteristics is tuned to test suitable adaptation of a theory. Here we show that gas fluidization of granular media in microgravity is a suitable approach to achieve steady states closer to thermally agitated systems free of settling. We use diffusing-wave spectroscopy to compare the spatial homogeneity and the microscopic dynamics of gas-fluidized granular media on the ground and in drop tower flights with increasing packing densities up to full arrest. The gas fluidization on the ground leads to inhomogeneous states as known from fluidized beds, and partial arrest occurs at packing fractions lower than the full arrested packing. The granular medium in microgravity in contrast attains a homogeneous state with complete mobilization even close to full arrest. Fluidized granular media thus can be studied in microgravity with dynamics and packing fractions not achievable on the ground.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app