Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Vortex assisted deep eutectic solvent (DES)-emulsification liquid-liquid microextraction of trace curcumin in food and herbal tea samples.

Food Chemistry 2018 March 16
We developed a new microextraction method for separation and preconcentration of curcumin using deep eutectic solvent known as green solvent. Deep eutectic solvent (DES) formed by mixing of choline chloride and phenol was used as an extraction solvent in microextraction study to extract the curcumin at pH 4.0. The curcumin concentration in enriched DES phase was analyzed by UV-Visible spectrophotometer. The effect of parameters such as pH, mol ratio of DES composition, volume of DES, volume of tetrahydrofuran (THF) and sample volume were examined. Interference effects of matrix components were investigated. The preconcentration factor was 12.5. The detection limit of method (n = 10) was 2.86 µg L-1 and the relative standard deviation (RSD, n = 8) was 1.8%. The method was successfully applied to determination of curcumin in food and herbal tea samples. The mean recoveries were between 96% and 102% and standard deviations were found in the range of 1-6%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app