Add like
Add dislike
Add to saved papers

Changes in molecular structure of chickpea starch during processing treatments: A thin layer chromatography study.

Food Chemistry 2018 March 16
To detect the changes in molecular structure of chickpea starch during processing treatments, a thin layer chromatographic method for characterizing the molecular structure of chickpea starch was developed. With this method, the components in chickpea starch could be divided into amylopectin, small linear molecules and large linear molecules, and their contents could be determined. It was found that the degrees of polymerization of the large linear molecules and small linear molecules in chickpea enzyme-resistant starch were about 40 and below 15, respectively. Furthermore, the small linear molecules were more susceptible to α-amylase hydrolysis than the large linear molecules. The results suggested that the large linear molecules and small linear molecules in chickpea enzyme-resistant starch might mainly originate from the amylose and amylopectin of native chickpea starch, respectively, based on the retrogradation properties of amylose and amylopectin and the enzymatic degradation behavior of the large linear molecules and small linear molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app