Add like
Add dislike
Add to saved papers

Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.).

BMC Plant Biology 2017 November 17
BACKGROUND: Auxin/Indoleacetic acid (Aux/IAA) genes participate in the auxin signaling pathway and play key roles in plant growth and development. Although the Aux/IAA gene family has been identified in many plants, within allotetraploid Brassica napus little is known.

RESULTS: In this study, a total of 119 Aux/IAA genes were found in the genome of B. napus. They were distributed non-randomly across all 19 chromosomes and other non-anchored random scaffolds, with a symmetric distribution in the A and C subgenomes. Evolutionary and comparative analysis revealed that 111 (94.1%) B. napus Aux/IAA genes were multiplied due to ancestral Brassica genome triplication and recent allotetraploidy from B. rapa and B. oleracea. Phylogenetic analysis indicated seven subgroups containing 29 orthologous gene sets and two Brassica-specific gene sets. Structures of genes and proteins varied across different genes but were conserved among homologous genes in B. napus. Furthermore, analysis of transcriptional profiles revealed that the expression patterns of Aux/IAA genes in B. napus were tissue dependent. Auxin-responsive elements tend to be distributed in the proximal region of promoters, and are significantly associated with early exogenous auxin up-regulation.

CONCLUSIONS: Members of the Aux/IAA gene family were identified and analyzed comprehensively in the allotetraploid B. napus genome. This analysis provides a deeper understanding of diversification of the Aux/IAA gene family and will facilitate further dissection of Aux/IAA gene function in B. napus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app