Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Pubertal Escape From Estradiol Negative Feedback in Ewe Lambs Is Not Accounted for by Decreased ESR1 mRNA or Protein in Kisspeptin Neurons.

Endocrinology 2018 January 2
In this study, we investigated whether decreased sensitivity to estradiol negative feedback is associated with reduced estrogen receptor α (ESR1) expression in kisspeptin neurons as ewe lambs approach puberty. Lambs were ovariectomized and received no implant (OVX) or an implant containing estradiol (OVX+E). In the middle arcuate nucleus (mARC), ESR1 messenger RNA (mRNA) was greater in OVX than OVX+E lambs but did not differ elsewhere. Post hoc analysis of luteinizing hormone (LH) secretion from OVX+E lambs revealed three patterns of LH pulsatility: low [1 to 2 pulses per 12 hours; low frequency (LF), n = 3], moderate [6 to 7 pulses per 12 hours; moderate frequency (MF), n = 6], and high [>10 pulses per 12 hours; high frequency (HF), n = 5]. The percentage of kisspeptin neurons containing ESR1 mRNA in the preoptic area did not differ among HF, MF, or LF groups. However, the percentage of kisspeptin neurons containing ESR1 mRNA in the mARC was greater in HF (57%) than in MF (36%) or LF (27%) lambs and did not differ from OVX (50%) lambs. A higher percentage of kisspeptin neurons contained ESR1 protein in all regions of the arcuate nucleus (ARC) in OVX compared with OVX+E lambs. There were no differences in ESR1 protein among the HF, MF, or LF groups in the preoptic area or ARC. Contrary to our hypothesis, increases in LH pulsatility were associated with enhanced ESR1 mRNA abundance in kisspeptin neurons in the ARC, and absence of estradiol increased the percentage of kisspeptin neurons containing ESR1 protein in the ARC. Therefore, changes in the expression of ESR1, particularly in kisspeptin neurons in the ARC, do not explain the pubertal escape from estradiol negative feedback in ewe lambs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app