Add like
Add dislike
Add to saved papers

Why patients with THBD c.1611C>A (p.Cys537X) nonsense mutation have high levels of soluble thrombomodulin?

BACKGROUND: Recently our group has described a new autosomal dominant bleeding disorder characterized by very high plasma levels of soluble thrombomodulin (TM). The THBD c.1611C>A (p.Cys537X) mutation in heterozygous state was found in the propositus. This mutation leads to the synthesis of a truncated TM which has lost the last three amino-acids of the transmembrane domain and the cytoplasmic tail.

OBJECTIVE: We investigated the mechanism responsible for TM shedding in endothelial cells with THBD c.1611C>A mutation.

METHODS: Complementary DNA of TM wild type (TM-WT) was incorporated into a pcDNA3.1 vector for transient transfection in COS-1 cells. Mutagenesis was performed to create the c.1611C<A (TM1-536) mutant and 4 other TM mutants (TM1-515, TM1-525, TM1-533 and TM1-537) with a transmembrane domain having different lengths. The effect of shear stress, metalloprotease inhibitor, certain proteases and reducing agents were tested on TM shedding.

RESULTS: Western blot and immunofluorescent analysis showed that TM1-536 was produced and a certain amount of TM1-536 was anchored on the cell membrane. A significantly higher levels of soluble TM was observed in the TM1-536 cell medium in comparison with TM-WT (56.3 +/- 5.2 vs 8.8 +/- 1.6 ng/mL, respectively, p = 0.001). The shedding of TM1-536 was 75% decreased in cells cultured in the presence of a metalloprotease inhibitor. No difference was observed between TM1-536 and TM-WT shedding after cell exposure to cathepsin G, elastase, several reducing agents and high shear stress (5000 s-1). Significantly higher levels of soluble TM were observed in the cell media of TM1-533, TM1-525, TM1-515 in comparison with TM-WT (p < 0.05).

CONCLUSION: The mechanism responsible for TM shedding is complex and is not completely understood: higher sensitivity of the TM1-536 to the proteolysis by metalloproteases and a defect of synthesis due to the decreased size of the transmembrane domain might explain the high levels of soluble TM in plasma of the carriers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app